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ALSTRACT

Inage nodels are very useful for inace coding

; comnression, seagmenta-
tion, internretation as well as

nage enchancenent and restoration. For
manv images in nractical amnlications, statistical information is nost

irmortant. This rerort deals with tie fundamental statistical theorv of
imasse models including the tonics of contextual analvsis. stochastic random

ield, the local and global nroverties of the random field, AR svstem
and the annlications of the statistical inage models.
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II.

STATISTICAL IMAGE MODELING i‘
INTRODUCTION J

The way a digital image is processed depandil}argely on how it is
modeled. Generaiiy—speakisi'image models are useful in image coding,
. 1
compression, interpretation, classification, texture characterization as
well as image enchancement and restoration. Both statistical and struc~
tural models of images have been considered as the images contain both

statistical and structural informatigg;} Purely structural models are

Bl
e

too regular to be interesting§§ In most practical applications especially
in the defense area, the statistical information is most important. With
these applications in mind?’@his report>dééié<bith the fundamental theore-

tical topics in statistical image modeling. An extensive list of references

is provided to cover many publications in this important area.
L

THE CONTEXTURAL ANALYSIS

Consider a digital image witih M x N picture elements, i.e., M rows
and N columns. A simple approximation of contextual dependence for the
two-dimensional patterns is called Markov mesh fi], which is considered
as a two-dimensional Markov chain, Assume that the image is partitioned
into m x n subimages. Then this two-dimensional Markov chain is charac-

terized by a transition probability matrix Pm n defined as
’
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where Pij - P(lexi) is the transition probability. Here xi’xj are the

vector measurements of subimages. It can be shown that for binary ran-

dom patterns,
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That the trarsition probability Pa b depends only on the transition prob-
14
abilities of the neighboring submiages is a very important result in con-

textual analysis. The above result may be generalized to grayscale pic-

tures. 1In general, the dependence on the eight neighboring subimages is

most important in contextual analysis.

The use of neighbor dcpendence approximation for the spatial patterns
was .first:studied by Chow [2]. The tree dependence he considered [3] can .~
also .be generalized-tOnspa£ial patterns. "In-this case each subimage will
depend on'certain surroundinq-sﬁbimages in -addition to the ecight-neighboring
subimages. - -For image.interpretation or classification, the compurd decision
theory provides a theoretical framework for decision making using- the con-
textial information. -However, the~practical-implemehtation of the compound
deeision rule has been limited to Markov dependence or neighbor dependence.
Assume that a subimage depends eonly on its foux adjacent subixagas in the
east-west énd ﬁorthosouth directions, then the decision rule is to choose

the class that maximizes the likelihood function [41.

[
P(8)p(x{e) m P(nile) (3)
i=1

where x and x, correspond to vector mcasurements of the subimage under
censideration and its neighboring subimage respectively and 8 = 1, 2, ==, n

with m being the number of classes. Here
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P(xi| 8) = { P(n, ej)p(ejle) (4)
i=1
where ej =1, 2, ... m and p(ejte) is the transition probability which is
usually determined experimentally. If the four subimages in the four cor-

ners are also considered, then the likelihood function for the eight-

neighbor dependence case is

P(0) P(x|8) 3 p(x, |6) (5)
i=1 *

where P(xj’G) is also given by Eq. (4). The simple result given by Egs.
(3) and (5) is due to the assumption of conditional independence between
the subimage and the neighboring subimages and the assumption that the
contribution due to the adjacent subiriages is independent of that due to
suﬁimages in four corners. Both assumptions are reasonable :in theory
though quite restrictive in practice. For example, the occurrence of one
class at one subimage will affect the occurrences of its neighboring
classes. Obviously, the results are not valid for dependence on arbitrary
set of subimages in the neighborhood. Another problem with the compound
decision rule is that the conditional probability densities are usually
not available and the a priori information may not be accurate. Experi-
mental results based on Gaussian assumption of probability densities have
consistently demonstrated the performance improvement with the use of con-
textual information [4], [5]. Empirically it is possible to determine these
densities from the histogram of gray levels of each subimage, which corres-

ponds to an unconditional probability density [6].

As the statistical contextual analysis based on the neighborhood depend-
ence model described above is quite restrictive in practice, further develop-

ment in image modeling is much needed for contextual analysis.




IXX.. STOCHASTIC RANDOI1 FIELD

The Markov random field is the most typical assumption in statistical
y models. Wong [7] considered the properties of a two-dimensional random
- field having finite first and second moments. He found that there is no

continuous Gaussian random field of two dimensions which is both homogeneous

and Markov of degree 1. A homogeneous random field has a covariance function

that is invariant under translation as well as rotation. Woods [8] considered
a more general definition of Markov mesh than that discussed in the last

section. Hassner and Sklansky [2] also discussed a Markov random field model

for images. They presented an algorithm that generates a texture from an
initial random configquration and a set of independent parameters that specify
a consistent collection of nearest neighbor conditional probabilities which

characterize the Markov random field.

For many practical applications such as in military area, the homogen-
eous random field assumption is not valid because of the object boundaries.
Nahi and Jahanshashi [10] suggested modelling the image as a background sta-
tistical process combined with a sa2t of foreground statistical processes,
each replacing the background in the regions occupied by the objects being
considered. Let '

b(n n) = gray level at the mth row and nth column,
iy

Ym,n) = 2 binary function carrying the boundary information,
’

o
[

a sample gray level from the background process,

o
[}

a sample gray level from the object process, and

<
H]

a sample gray level from the noise process,
then the model :can-be written as

(1 (6)

=y, + - +
b(m,n) Y(m,n)bo(m,n) Y(m,n)]bb(m,n) V(m,n)
vhere Y inccrporates the assumption of first order Markov process on the

object boundaries.




Huang modeled image scan lines as a Markov jump process [1l1]. This

model led to non-linear noise reduction and image segmentation algorithms

that are superior to linear techniques. The recursive calculation of a

e

conditional probability involving the boundary component of the scan lines

was the key to the non-linear algorithms. Modestino [12] modeled the image
as a marked point process evolving according to a spatial parameter. In

another approach the image is considered as a spatially variant linear sys-
-L>j tem superimposed by hon-linear elements corresponding to object boundaries.

'f} Ingle and Woods [13] considered the use of a bank of Kalman filters corres-

ponding to various correlation directions and demonstrated a considerable

: ‘3 improvement in the visual quality compared with linear constant coefficient
g i Kalman filtering. Chen [14] has employed an adaptive Kalman filtering that
j; 'i opcrates a generalized likelihood ratio test in parallel with the Kalman
filter. An object boundary corresponds to a state jump that is detected

and used to update the Kalman filter. It appears that both textural and

temporal variations can be properly taken into account in the image enhance- ?

ment.
IV. LOCAL AND GLOBAL MODELS

Local statistical image models emphasize on the use of local statistics
while global models attempt a description of the random field by using the
information from the entire field. 1In the absence of any knowledge or as

1 assumption about the global process underlying a given image, one may attempt
| to describe the joint probability density of the gray level or other proper-
. ties of the picture elements. To do this for the entire image involves
extremely high dimensional space which is unrealistic. It would be easier
to consider a small neighborhood. However, even for a 3 x 3 neighborhood,

a nonparametric representation in a 9 dimensional space along with the asso-
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ciated sample size and storage problems still presents serious daifficulty.

Thus even for local models, it would be desirable to “eompreés" the
local properties to a low dimensional space. Local desctiption of co-
occurrence statistics for textures le.g. [15]) uses only 2 x 1 neighborhoods.
Different features can then be derived fram the co-occurrence matrix for

texture classification.

Most of the local models, howover, use conditional probabilities of pic-
ture elements w#ithin a window, instead of their joint probability distribu-
tions described above. The Markov dependence assumption will make a picture
element depend upon its neighbors. Let r and s be the row number and the
column number assoclated with a picture element x. .A conditional ncarest-

neighbor model is

P (xrs/all other values]

= P [xrs/x ] ‘7)

14

x x x
r-1,8' "r+l,s’ “rys-1" “r,s+l

and is also known as a Markov field. An efficient procedure to take into
account the local dependence is the statistical theory of nearest-neighbor

systems on a lattice [16]. If we consider the four neighbors in the east-west

west and north-south directions, then we have a non-causal model given by i

*rs f.Bl(xr-l,s + xr+1,s) + Bz(xr, s+l) +“xr,s-l + Yrs ©)

vhere r = {, 2, o.M, 3=1,2, ..., W; Bl and 8, are the coefficients to
be determined; and {Yrs} is an uncorrelated Gaussian noise process with .
E[Yrs] = Q, var (Yrs] = ci, i=1, 2,..., mwvhere m is the number of pattern
clagses under consideration. The coefficients Bl and B2 may also differ
among various classes. A special case of Eq. (B) is the causal model given
by

LI Bi {(xr-l.s - ui) + (xr's_1 - ui)} +Y 9)
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Each class 0y corresponds to a set of parameters ("ii Bi' 01). The para-
meter values are given or estimated for each class. Classification con-
sists in deciding which of the given sets of parameter values best des-
cribes, in terms of probabilities, the image to be classified. It is
noted that the model given by Eq. (9) permits discrimination between
classes wy and wj even whe.: (ui, oi) = (uj, oj) so long as Gi#Bj. That
is the model performs classification by using the information about the
inter-pixel correlation ~s wéll as.the mean and gtandard deviation of
gray levels. Both Eqs. (8) and (9) renresent first order autoregressive

model where the autoregression parameters Bi describe the spatial correla-

tion. An alternate expression for the model described by Eq. (9) is

X = o, + x + . + Y
rs i Bi [ r-1l,s xr,s—ll rs
=a, + B, 2 +Y
i i x,s rs
where a. = (1-2B.)u., and 2 =. + . Here a, and B. can he
i ( Bl)ul' ne 2,8 T *re1,s *p,s-1: ere a, Bl

estimated from ordinary simple linear regression by the method of least
squares. The maximum likelihood drcision rule can be used to classify
X g which follows the Gaussian probability with all parameters represented

-1

by their least squares estimates.

It is noted that one difficulty with the model given by Eq. (8) is
that, even if the Yrs and hence the x g are Gaussian, the estimation of
Bl and B2 from data is not a simple least-scuares problem, because the
Jacobian of the transformation from thc noise variable Yrs to the ohser-
vation X o is difficult to evaluate. If the density function of the
finite Fourier transform of X o is considcred, then the Jacobian of
transformation will be unity [17]. Egs. (8) and (9) can be generalized
to higher order models. For the second order model, the nicture elements

identified as 1's and 2's in the folloving figure should be included in the

linear model.
-7 -
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For the nth order model, the picture elements up to a distance of n should

be included in the model. The expression is given by

) + Y (11)

n n
= + s .+
xrs §=lﬁi (xr-l,s xr+l,s) + §_ Bi (xr,s-l xr,s+1 rs

i=1
where the parameters Bi' B; can be estimated by using the maximum likelihood

principle [18] if only casual terms are used in Eq. (11).

For the global models considered, the Gaussian model is an oversim-
plification [19] even though it is mathematically tractable. The stationary

Gaussian assumption requires that the mean vector -

of gray levels be a vector of identical components. Hunt [20] suggested to

use a nonstationary Gaussian model which allows the mean vector to have

unequal components.

It would be desirable to include some structural property in the

in the global model. Matheron [21] uscd the term "regionalized variables”

to emphasize the particular features of the picture elements whose ccwplex
mutual correlation reflects the structure of the underlying phenomenon.

He assumed weak stationarity of the increments in the gray levels between
picture elements. The second moment of the increments in the gray levels
between picture elements at an arbitrary distance, called the variogram,

is used to reflect the structure of the field. Knowledge of the variogram
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is useful for the estimates of many global and local properties of the

field. A characterization similar to the variogram is given by the auto-
correlation function. However for real imagery good functional forms of
variogram and autocorrelation are seldom available. A reasonable approxi-
mation must be sought betwecen the functional form c¢f the image model and

the real data considered.

THE ARMA SYSTEMS

Eg. (11) is the autoregressive model in its general form. A more
general parametric model is called the autoregressive moving average (ARMA)
system which replaces Yrs in Eg. (1l1l) by a finite number of previous'Yrs
values. Of course only the causal terms are taken in Eq. (11). The
resulting ARMA or mixed model can provide a good representation of the
image with properly chosen coefficients. However an autoregressive model

of sufficient order should he adequate.

To determine the order of the rodal, a maximum likelihood decision
rule can be used for choices of neighbors [17]. A simpler proccdure is

to use the Akaike Information Criterion (AIC) in each of the two dimensions

and thus the window size can be determined [22] by the final prediction error.

Wle consider two lines parallel to the horizontal and vertical axes passing
a point (i,j), and emplov one-dimensicnal estimators.

" 1

) (1)

"3 [Z>=1 1 “i-p,3

- N

x, =) 8k (12)
% - i,3-q

where 1 and N are the window sizes in the horizontal and vertical directions

, M N s : .
respectively., Let S(}) and s(.) be the minimum estimation errors. We deter-
m

in min
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mine the optimum values of M and M so that the two criterion functions

I+ M+ 1 (1)
E = —————= S5,
FPE (M) I~-M=-1 mnin
J+ M+ 1 _(N)
= —_— 13)
FPE (N) J-M -1 min (
are minimized. Here the original image size is assumed as I x J. A i

more accurate procedure would consider the two dimensions jointly and
may lead to a smaller window size because of the correlation among the
adjacent picture elements. Although, the AIC may lead to inconsistent

result, it is by far the simplest criterion for determining the window

size.

The coefficients in the autorccressive model should be determined
from the autocorrelation function. However it would be desirable to
develon an efficient two-dimensionrnal Lavinson recursion to compute the
coefficients. The frequency domain analysis and the maximum entropy

method are alternative procedures for estimation of coefficients.

The study of ARMA systems for image analysis is still at its infancy.
Further development of ARIIA systems is much needed for texture characteri-

zation and object boundary extraction.

APPLICATIONS OF STATISTICAL IMAGE MODILS

In the ARMA systems, images are described by a few coefficients or

parameters which may be coded for image transmission instead of transmitting

the whole picture. This represents an important approach to image compres-

sion. Although a limited amount of effort has been made so far in this
direction [23] , development in two-dimensional ARMA models will find great

applicability in image transmission.

<10




For the image interpretation and classification, image nodels must
emphasize on discrimination information such as the local statistics as

the object and background must be statistically different. Different

objects nust have different model parameters. Although nost image models

are designed to represent or characterize an image rather than to discri-

minate among different objects or classes, useful discrimination informa-

;A§ tion is contained in the image models.

Necause of a larpge variety of inages, many different image models

are available. Statistical nmodels are most effective for images which
o j arc rich in texture. The image processing techniques employed are often
- ; deternined by image modeling. For exanple, Kalman filtering is parti-

? cularly suitable for images modeled as a spatially variant linear system

vith additive noise. For images nodeled with a multiplicative disturbance,

a different image processing technique is required. On the other hand,
preprocessed images usually nake image modeling easier. Image models also

provide useful knowledge about the im=;e for image segmentation and resto-

. ration.

In summary image modeling in general and statistical image modeling

in particular provides an abstraction of rich information of various nature a

in the images and should be considered as an integral part of image analysis

and synthesis.

-
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